

多功能拉压力试验机控制器

Z075 MultiTest V2 拉力机

7 寸触摸屏

带 USB 接口

多功能拉压力试验机控制器

- 7寸高清触摸屏
- 带 USB 接口, 支持 U 盘全数据保存, 和 PDF 试验报告直接输出
- 测试曲线打印功能, PDF 曲线输出
- 具备速度 PID 控制和力值 PID 控制
- 可扩展两路附加传感器接口
- 用户自定义试验方法名称,自定义材料名称
- 试验配置方案存取系统
- 方便快捷的系统更新

电气安全警告:

安装调试时,应注意静电防护,以防损坏电子线路。

请按说明书要求进行接线和操作,严禁私自改造接线。

请在标记的电气额定值内按照产品使用说明操作设备。

只有在正确接地的情况下才能运行设备。

在连接或检查线路情况的时候,请务必关闭设备电源。

请使用合适规格的螺丝刀及接线工具进行电气接线和设备安装。避免因设备材料的不合规格而导致接线不良。

版本更替与所有权:

本说明书仅提供给机构厂商装配调试,不适合最终客户使用。 说明书版本可能会更新修订,请咨询供应商以获得匹配控制器的最新说明书。 版本: 2.0

如有疑问请联系电话 13771081915 (微信同号)

1 接线说明

下排端子	(序与	号从左到右看)	上排端子(序号从左到右看)			
	序			序		
组别	号	定义	组别	号	定义	
A 组	#1	接大地	K 组(默认不装)		连接电脑 上位机。	
2EDG-5.08-3P	#2	DC:18-24V	USB-B 接口	和	1下面 485 接口功能相同	
电源接口	#3	AC:18V	〕组(默认不装)	#1	GND	
	#1	驱动信号+	2EDG-5.08-3P	#2	485-B	
B 组	#2	驱动 PUL+	485 通讯接口	#3	485-A	
2EDG-5.08-6P	#3	驱动 PUL-	组	连打	唼 U 盘,更新程序、图标	
电机驱动接口	#4	驱动 DIR+	USB-A 接口		等。	
连接电机驱动	#5	驱动 DIR-	H 组	#1	VCC	
器	#6	驱动信号-	232 电平	#2	GND	
	#1	输入公共线	波特率 19200	#3	BUSY	
	#2	上限位	微型打印机	#4	RXD 接打印机 TXD	
	#3	下限位	接口	#5	TXD 接打印机 RXD	
	#4	停机		#1	GND	
	#5	输入公共线	G 组	#2	1B	
C 组	#6	输入3	2EDG-5.08-4P	#3	1A	
2EDG-5.08-8P	#7	输入4	编码器1	#4	VCC	
信号输入部分	#8	输入5		#1	GND	

芝麻自动化 2021

3

Z075MT v2 多功能拉压力试验机控制器

		传感器电源+(一般					
	#1	为红色)		#2	2B		
		传感器信号+(一般					
	#2	为绿色)	2EDG-5.08-4P 始辺思っ	#3	2A		
		传感器信号-(一般	细冲石 4				
D 组	#3	为白色)		#4	VCC		
2EDG-5.08-4P		传感器电源-(一般					
力传感器1	#4	为黑色)	L组 刷程序, 仅出厂用。				
		传感器电源+(一般					
	#1	为红色)					
		传感器信号+(一般					
	#2	为绿色)					
E 组(默认不		传感器信号-(一般					
装)	#3	为白色)	如有疑问请联系电话				
2EDG-5.08-4P		传感器电源-(一般	13	87-710	08-1915		
力传感器 2	#4	为黑色)		(微信	同号)		

常规接线图例

供电电压: 15-18V AC / 18-24V DC 25W

接线图例仅供参考,根据目标对象的型号和规格会与图例不用。

上图为H组打印机接线图例(以炜煌E30/31系列和融众易达系列微型热敏打印机为样本)

上图为D组力传感器接线图例

上图为 G 组编码器接线图例

2 运行界面与功能描述

2.1 主页面

速度 mm/min 位置距离 mm 1 0.0 2 0.21 系统状态 待机准备 6	主传感器数据 N 3 0.00	最大力值 N	时间 s 50.6
	9		
名称: 56ttig 材料: ft 编号: 100026 10 模式: 力 系统正常	y 值保持	动 🖲 🔂	合系统
2021-05-1841:35:50 No1 58! ID :	01 Sull Gilser 待	机模式	18

2.1.1 实时速度显示

显示单位为 mm/min, 不能修改显示单位。

2.1.2 实时位移位置显示

位移数据的显示,显示单位可以在试验参数页面进行选择,有四种单位可供选择。显示的小数位 根据不同的单位会有变化。正负方向的数据显示由数字的颜色表示,绿色表示向下方向,黄色表 示向上方向。

2.1.3 主传感器数据

主传感器数据的显示,显示单位可以在试验参数页面进行选择,小数位

数自动匹配修改。小数位数根据试验参数页面配置来,可以反向显示或绝对值显示。负数显示是 前面带有负号。

2.1.4 辅助显示位置

可以通过试验参数进行选择,显示试验过程中的最大力值或者实时显示辅助传感器的值(由系统

设置中选择哪个传感器)

数值方向(符号) 也通过颜色表示,绿色和黄色。

2.1.5 试验运行时间

累计试验运行的时间,系统设置中有极限值,达到极限值,会自动触发强制停止试验。

2.1.6 系统状态

系统状态信息,准备状态、正在测试状态和故障状态。

2.1.7 预加载信息

显示预加载的状态,和累计的预加载行程。预加载功能可以在试验参数中开启或关闭。

2.1.8 手动控制开启位置

点击开启手动控制弹出页面,再次点击的关闭弹出页面。

2.1.9 运行过程曲线绘制

运行过程中根据传感器值绘制曲线,可以选择 X、Y 轴的数据来源,显示比例为自适应模式,初

始一个最小值,超过最小值后绘图比例会自动跟随数据进行适配。

此图形为实时绘制,超过较大数据量后,会改变绘图方式,匹配数据,会与试验报告的曲线有细 节的差异。

2.1.10 试验信息简讯

显示当前配置好的实验信息,试验名字,试验编号,试验控制类型等信息。

目的为启动试验前,确认试验配置是否正常。

2.1.11 启动试验按钮

启动配置好的试验,用户权限管理中,有单独权限管理。

2.1.12 停止试验按钮

在试验过程中,手动停止进程,不会触发数据的后置运算和保存等动作。

2.1.13 系统菜单按钮

点击后, 弹出系统菜单页面, 再次点击, 隐藏系统菜单。

2.1.14 时间日期

显示控制器设置的时间日期

2.1.15 USB 状态信息

无U的时候,显示 NO USB, 插上U盘后, 如果能正常识别, 会显示 USB OK。

2.1.16 用户信息

当前用户的编号,和当前用户名,长点击后,可以进入用户选择与密码输入页面。

2.1.17 系统状态

系统状态信息

2.1.18 通讯状态

如果连接了 PC, 正常通讯后, 会显示通讯进度。(扩展功能)

2.2 手动操纵

- 2.2.1 手动速度选择
- 2.2.2 以选择的手动速度回到位置零位
- 2.2.3 停止当前运行步进电机动作
- 2.2.4 单速上升
- 2.2.5 双倍速上升 (手动设定速度的两倍)
- 2.2.6 单速下降
- 2.2.7 双倍速下降
- 2.2.8 手动选择速度的具体数值显示

2.3 系统菜单

系统菜单中显示了各个系统功能的入口按钮。

这些功能入口基本都受用户权限管理限制,当用户权限关闭了对应的权限后,此时弹出的系统菜单中,

将不会显示该功能的入口按钮。

功能权限内容,详细看用户管理。

2.4 试验参数 (一)

试验基本信息							V2-20210430A
试验报告(方案)名称		56ttig]			
试验报告编号	100026	样品形状	板材	棒材	管材	弯曲跨距	64.00
样品材料名称	fty	样品标距	80.00	样品直径	10.00		4.00
试验速度 35	返回速	度 95	单位	1点动速度	1.0	07 自动通	医回功能
试验行程 100.0	试验方	n n.	E 🛛	向下		返回延时	1.0
0 预加载功能	预加载速	度 35.0	预加]载限值	3.0		
结束判定 全行程	快速衰减	力值缓降	力值达到	变形达到	力值保持	力控制	往复运动
					(00	~
20081 de 12 14-09-00	No. TISPI	ID : 01 S-		14-41	林二代		
10000 Mg 40 11:01/20	10 0001	m, or sup	veredisien.	1347	1天-11		

试验报告(方案)名称:可以单独修改、保存为试验方案时作为试验方案的名称、调用试验方案

时,选用试验方案的名称。

试验报告编号: 纯数字试验报告编号, 每次完成一次试验, 试验编号自动递增。

单位点动速度: 主页中手动控制的速度的基础单位值

自动返回: 功能可以开关, 返回延时是在完成试验后 延迟 限定时间后返回的试验起始点

预加载功能: 以预加载速度启动,加载到传感器值达到限值后,切换到正常试验行程

2.4.1 全行程模式

以设定速度,运行整个试验行程,没有额外的控制。

2.4.2 快速衰减模式

Z075MT v2 多功能拉压力试验机控制器

结束判定	全行程	快速	度减	力值缓降	力值达到	变	形达到	力值保持	力打	空制	往复运动
灵敏等级	Tin	1	2	3	4	5	6	7	8	lax	
最小力值	2.0 N							6	0	5	~
2001-01-04	91-97-4	5 No.1	15941	D · 01 Str			待机	横式	~	~	

当传感器力值在限定的时间内,发送短时间的力值掉落,并达到设定,判定试验完成。在最小力值 以上才会触发完成判定。判定后形成断裂标志记录。 灵敏度等级等效近似:

Min: 1N/s, 1: 1.6N/s, 2: 2.4N/s, 3: 3.4N/s, 4: 4.6N/s, 5: 6.0N/s, 6: 10N/s, 7: 14N/s, 8: 20N/s, Max: 30N/s

2.4.3 力值缓降模式

结束判定	全行程	快速衰减	力值缓降	力值达到	变形达到	力值保持	力控制	往复运动
缓降比例	20.0 %] 最小力值	50.0 N]				
						6	00	1
A. Sabal							20	
		No DORI	n . 01 Sum	orlinor	(法机	埴式		

力值大于最小力值,并跌落到达最大力值的设定比例数值,判定试验完成。没有时间限制,没有边 沿特性要求。判定后形成断裂标志记录。

判定力值 = 最大力值 * 设定比例

2.4.4 力值达到

当主传感器力值达到设定值,判定试验完成。

2.4.5 变形达到

结束判定	全行程	快速衰减	力值缓降	力值达到	变形达到	力值保持	力控制	往复运动
变形值 [15.000 mm	判断方向	大于设定	值 小于设	定值			
						6	00	5
		-				~	20	615
		No. Contract		CONTRACTOR OF THE PARTY OF	法书	125-255		SC HORSEN

当变形传感器,达到设定值(两个方向可选),判定实验完成。

2.4.6 力值保持

结束判定	全行程	快速衰减	力值缓降	力值达到	变形达到	力值保持	力控制	往复运动
设定力值	20.00 N	1	保持时间 🗌	30.0 s]			
PID选择	PID1	PID2	PID3	PID4		(0 6	~
2021-06-12	11-37-44	No USBI T	D : 01 Su	perliser	待机	模式		

以设定的速度行进,达到设定力值的 95%后,进入力值保持模式,以位移型 PID 控制方式进行位 置控制,使力值达到设定,并持续保持设定的保持时间。位置型 PID, PID1 ~PID4。

2.4.7 力控制

结束判定	全行程	快速衰减	力值缓降	力值达到	变形达到	力值保持	力控制	往复运动
始力值	1.00 N	¥	冬力值 3	86.00 N	位移	限制 120.0		
力速度	1.00 N/s	Р	ID选择PI	D5 PID	6	(0 6	
2022 46-12	11-87-87	No USBI T	D : 01 Sup	erllser	待机	模式		

力控制模式,以设定速度运行,达到始力值后,进入力控制状态,以速度型 PID 控制运行的

速度,使力值按设定的力速度持续增大,达到终力值后完成试验。

如触发位移限制,也会判定试验完成。

可选的 PID 为, PID5、PID6, 速度型 PID。

2.4.8 往复运动

前置行程 10.0 mm 往复行程 6.0 mm 往复次数 20	
 () (
	~
	And the second se

以设定的速度运行设定行程,随后按往复行程设置,往复走设定的循环数。

2.5 试验参数(二)

试验系统采用的使控制与计算分离处理,以行程控制先完成试验过程,然后按计算设定再对试验过 程的数据进行后置计算。

计算模块相互独立,每个计算模块独立计算内部数值,不限制计算模块的开启数值,但保存试验结 果以及打印和输出时,有行数限制。

计算过程中,如果涉及最大值、断裂值、上屈服点、下屈服点,则数据报告中的曲线,会在计算判 定的位置打标记,标识经程序运算确定的位置。除非控制模式为快速衰减模式,否则关于断裂的运算和 判断,都按慢速衰减的判断标准执行。

2.5.1 基础极值计算

全数据计算,获取试验过程中最大力值和最大力值的位移,并简单公式计算最大强度

最大强度 = 最大力值 / 样品截面积

芝麻自动化 2021 16

2.5.2 塑料拉伸计算 (计算方式参照 GB/T 1040)

计算过程中,需要用到标距,如果开启了变形量功能,则整个计算过程中关于拉伸部分的数值,

均会采用变形量的数据,否则使用位移数据进行计算。

最大应力:

$$\sigma = F/A$$

F:最大力值

A: 截面积

断裂应变:

$$\epsilon = \Delta L/L$$

ΔL: 断裂应变

L: 标称应变 (标距)

拉伸模量:

$$Et = (\sigma 2 - \sigma 1) / (\epsilon 2 - \epsilon 1)$$

取 应变为 0.0005 和 0.00025 的点计算。

2.5.3 塑料弯曲计算 (计算方式参照 GB/T 9341)

仅使用位移数据进行计算,不出来变形数据。

输出结果包括 弯曲应力, 弯曲应变, 和弯曲模量

弯曲应力:

$$\sigma f=3FL/(2bh2)$$

- F: 力值 (最大力值)
- L: 跨距
- b: 宽度
- h: 厚度

弯曲应变:

s: 扰度

弯曲模量:

$$Ef=(\sigma f2 - \sigma f1)/(\epsilon f2 - \epsilon f1)$$

2.5.4 金属拉伸计算 (计算方式参照 GB/T 228)

计算模块中,如果开启了变形量功能,则位移部分会使用变形量数据进行计算,否则采用位移数 据进行计算。

计算输出包括:

上屈服强度

下屈服强度

断裂延伸率

塑性延伸率(运算过程可能会数据稳定性而不能有效计算出结果)

2.5.5 金属弯曲计算 (计算方式参照 YB/T 5349)

以位移数据计算,仅包含三点弯曲的计算公式,输出结果均为三点弯曲模式下的计算输出。

结果输出包括:

弹性直线斜率(运算过程可能会数据稳定性而不能有效计算出结果)

抗弯强度

断裂扰度

- 2.5.6 金属压缩计算 (计算方式参照 GB/T 7314)
 - 以位移数值计算,不受变形量影响。

输出结果包括:

抗压强度

上屈服强度

下屈服强度

弹性模量

2.5.7 附加模量计算 (计算方式参照 GB/T 22315)

以标准中相应的计算公式, 计算输出 杨氏模量

2.5.8 基础撕裂计算

采样运行过程中的分点数值,去除前置距离后,每间隔距离采样一个数

据点, 做多 32 个数据。

采样后,根据采样的数值求平均力,并以此平均力值除以宽度,获得撕裂强度数值。

2.5.9 定力值拉伸率测量

获取设定力值点位置的试验过程拉伸率

2.5.10 定拉伸率力值测量

获得指定拉伸率点位置的力值数据。

2.6 试验参数 (三)

此页面用于设置主页面和输出报告、打印报告等需要用到的单位换算,曲线绘制的基准等。

按试验基本要求配置。

2.7 历史数据 (列表)

最大可存储18个历史数据,每个历史数据均包括全部的试验过程信息、绘制曲线、试验配置等信

息。点击对应的记录条目,可以打开历史数据详情页面。

2.8 历史数据 (详情)

试验基本信息 试验报告编号: 100026 材料名称: fty 样品类型: 棒材 样品长度: 80.00 mm 样品外径: 10.00 mm 设定行程: 100.00 mm 设定跨距: 64.00 mm 设定速度: 35.00 mm/min 设定 控制模式: 力值保持模式 保持力: 20.00 N 保持时间: 30.0 s 5	计算输出结果 最大力值: 最大力值位移: 最大强度: 撕裂均力: 撕裂强度:	0.00 N 0.00 mm 0.000 MPA 0.00 N 0.00 N/m
		撕裂数据
2021-05-13 11:39:32 No USB! ID : 01 SuperUser	待机模式	

左上角为设定信息,右边为计算输出信息,左下为试验过程的曲线绘制。

右下图标依次为: 删除本记录、打印输出报告、USB保存、返回列表页面

其中 USB 保存,保存为两个文件,一个使完整的试验信息数据文件,一个使 PDF 报告。其中完整的试验信息文件,后期支持 PC 段打开,并做二次数据分析。

撕裂数据按钮,仅当试验配置的后算模块中开启了撕裂功能后,试验完成才会有此按钮,点击按钮 后弹窗显示试验过程中采样的各个数据点的数值。

美闭 撕裂数据 1 一 1 一 1 一	试验基本信息 试验根告名称:56ttig 材料名称:tb 撑运行霍:100.02:1.015 N 设定行霍:100.02:1.295 N 设定定速度:35.00 03:1.644 N 控制模式: 力介 目标力值:40.0 04:1.978 N 05:2.392 N 06:2.831 N 07:3.333 N 08:3.927 N	试验报告编号: 100025 09: 4.653 N 17: 11.906 N 10: 5.429 N 18: 12.906 N 11: 6.218 N 19: 13.970 N 12: 7.150 N 20: 14.987 N 13: 8.033 N 21: 15.996 N 14: 8.966 N 22: 17.054 N 15: 9.921 N 23: 18.211 N 16: 10.952 N 24: 19.354 N	计算输出结果 最大力值: 25:20.506 N 26:21.642 N 27:22.700 N 28:23.801 N 29:25.002 N 30:26.019 N 31:27.088 N 32:28.159 N	39.84 N 23.29 mm 0.507 IIPA 12.47 N 1.25 N/m
			Xil	撕裂数据

2.9 最新数据

试验基本信息 试验报告编号: 100025 试验报告名称: 56ttig 试验报告编号: 100025 材料名称: fty 样品类型: 棒材 样品长度: 80.00 nm 样品外径: 10.00 nm 设定行程: 100.00 nm 设定跨距: 64.00 nm 设定速度: 35.00 nm/min 控制模式: 力值达到判定 目标力值: 40.0 N	计算输出结果 最大力值: 最大力值位移: 最大强度: 撕裂均力: 撕裂强度:	39.84 N 23.29 mm 0.507 TPA 12.47 N 1.25 N/m
		撕裂数据
2021-05-13 11:39:18 No USB! ID : 01 Superliser	待机模式	

页面显示信息和内容具体意义等同历史数据详情页面,数据为最近进行的一次试验的数据,

不论最近一次试验的数据是否点击了保存,这里都能显示并进行相关操作,但不能再保存到历史数据中去。

2.10 管理预设和调用预设

管理预设和调用预设,显示的页面情况基本一样。共有10组,每组8个存储位置

管理预设,点击存储位置图标,将当前配置好的试验信息、显示配置等信息保存到指定存储位

置,并以当前试验报告名称命名该方案。

调用预设,点击方案图标,调用预存好的实验信息、显示配置等,覆盖当前系统中的数据,并 以试验方案的名称覆盖试验报告的名称。

2.11 用户管理

系统支持最大 32 用户,每个用户具有独立的用户名、密码和权限。

其中 00 用户为特殊用户,不可关闭,不可消除权限。初始登录时不能直接选择 00 用户,需 要长按左箭头图标,才能选择 00 用户,并对 00 用户的信息进行修改。

对用户数据信息的任何修改,比例在切换用户或返回前进行保存,否则不会保存修改的信息。

登陆后,可以在系统信息中选择保持登录状态,使每次开机不再输入密码,而保持使用上次登 录系统的用户账户。

2.12 硬件校准 (主副传感器)

模拟量输入的力值采样三点校准

从小到大采用三种标定数据,依次输入到校准值输入的框内,确认稳定准确,点击记录校准点 按钮,将数据保存。三个数据,需要依次增大或者依次变小,都输入后,点击更新校准系数,系统 将按新的计算出的校准系数处理传感器的数值。

位移采用两点校准方式,输入校准值,点击记录,运行一段位移后,输入准确稳定的校准值, 并点击记录,随后点击更新校准系数,可以保存到系统中,之后位移数据就按新校准进行。

定值上下行,按设定的距离上下移动(没有校准时,移动的行程仅供参考)。上下移动会引起 源码的变化,在输入校准值等时,请等待运行停止。

Z075MT v2 多功能拉压力试验机控制器

用于校准变形量传感器,一个编码器接口的副位移传感器、一个模拟量接口的副模拟量传感

器。具体操作过程同主传感器校准。

2.13 系统设置 (配置)

控制信号: 触摸控制常态有效, 不选择外接信号时, 外部输入信号无效

位移信号: 编码器为使用外部输入的编码器计算位移的值, 虚拟轴为使用驱动输出的脉冲和方向 类累计计算位移的数值。

力值传感器量程:用于计算零位稳定和滤波系数,与实际力值的显示和运算无关。

力值零位: 在零位的一定范围内, 力值保持零不变。

力值滤波系数: 对数据过程进行滤波,系数越大,数据变化越平缓

变形量选择: 如关闭, 涉及变形量的后算模块都将使用位移, 如开启, 则使用变形量。

变形量量程、零位、滤波: 含义同力值部分

编码器换算: 编码器数值换算到位移的系数 (可以手动填写也可以通过 校准获得)

脉冲换算比例: 脉冲输出时每个脉冲对应的位移距离数值(可以手动填写,或在虚拟轴状态下,

校准获得)

芝麻自动化 2021 29

变形换算比例: 副位移传感器的数值换算系数 (可以手动填写也可以通

过 校准获得)

极限力值、极限位移、极限时间:任意试验过程中,力值、位移或者时间 触及设定的极限值,则 试验立即强制停止。

2.14 系统设置 (PID)

0.1000 0.0100 0.1200	0.0800	0.0600	1.2000	0.4000
0.0100	0.0090	0.0080	0.1200	
0.1200		No. of Concession, Name of	0.12.00	0.0400
	0.1000	0.0800	0.3000	0.1500
20	20	20	20	20
0	0	0	0	0
0.008	0.006	0.005	3.500	1.500
10.000	8.000	6.000	50.000	20.000
欠必须密码	i2tz.L2	欠用户		
				5
2	次必须密码 <u>38 10 : 01 Su</u>	次必须密码 记忆上2 38: ID : 01 SuperUser	次必须密码 记忆上次用户 B ID: 01 SuperUser 待机模式	次必须密码 记忆上次用户 SHID: 01 SuperUser 待机模式

PID 参数输入,其中 PID1-PID4 为位移型 PID,用于保持力模式。 PID5 和 PID6 为速度型 PID,用于力控制模式。

开机密码选择:可以选择每次开机输入密码,也可以选择记忆用户免输入密码。

2.15 系统工具

涉及系统内部信息的更新和处理。

左侧为系统更新工具,包括图标、图片、应用程序等更新(大部分更新内容,开机过程中会自动检测 U 盘是否有可以使用的文件,并直接处理)

初次开机需要进行 恢复出厂设置、清除用户信息、清除试验记录、清除系统日志等操作。

3 应用说明

- 3.1 根据接线线图装配好设备。.
- 3.2 初次开机,点住(保持按压)向左的按钮 3-5 秒,用户编号变为 00,
- 3.3 输入通用密码 83598350

3.4 点击进入系统

- 3.5 点击菜单,点击系统工具
- 3.6 系统工具页面中,选择点击回复出厂设置、回复用户设置、清除历史记录、清楚日志系统
- 3.7 打开系统设置,修改相应系统配置
- 3.8 打开用户管理, 配置 可以使用的用户名 密码 和权限, (建议平时不要用 00 用户)
- 3.9 等左下角时间日期红色变灰后(红色表示有数据等待存储), 重启系统
- 3.10 登录进入系统 (可以开机免密码登录,以后开机保持上次开机用户)
- 3.11 进入硬件校准,对传感器和位移距离进行校准(传感器是3点式校准,位移是2点式校准)
- 3.12 传感器、位移校准需要在一个方向上进行, 输入校准力值应从小到大逐个输入
- 3.13 进入试验配置,对试验过程控制配置、试验后数据处理与输出内容进行选择、对显示画面的进行配置

4 PC 控制说明

暂无上位机软件。所有操作均在触摸屏端完成。

5 特殊功能说明及安装说明。

包括激活、特殊开关等等

外壳尺寸: 203*135*28mm 安装开孔尺寸: 193*125mm

芝麻自动化 2021 34

无锡芝麻自动化科技有限公司

地址: 江苏省无锡市惠山区天翔路 18 号缤悦湾 1-1525

电话:0510-83598350

手机:13771081915

邮箱:2023098792@qq.com

服务支持的一般说明